Medicinal Flowers

Part 291)

Acylated Oleanane-Type Triterpene Bisdesmosides: Perennisaponins G, H, I, J, K, L, and M with Pancreatic Lipase Inhibitory Activity from the Flowers of *Bellis perennis*

by Toshio Morikawa^a), Xuezheng Li^b), Eriko Nishida^a), Seikou Nakamura^b), Kiyofumi Ninomiya^a), Hisashi Matsuda^b), Yoshimi Oda^b), Osamu Muraoka^a), and Masayuki Yoshikawa^{*a})^b)

^a) Pharmaceutical Research and Technology Institute, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan

^b) Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan (phone: +81-75-5954633; fax: +81-75-5954768; e-mail: myoshika@mb.kyoto-phu.ac.jp)

The MeOH extract from the flowers of *Bellis perennis* was found to show pancreatic-lipase inhibitory activity (IC_{50} 455 µg/ml). From the extract, seven new triterpene saponins named perennisaponins G (1; IC_{50} 163 µM), H (2; 137 µM), I (3; 147 µM), J (4; 148 µM), K (5; 223 µM), L (6; 81.4 µM), and M (7; 195 µM) were isolated as pancreatic lipase inhibitors. The stereostructures of 1-7 were elucidated on the basis of chemical and spectroscopic evidence.

Introduction. – The Asteraceae plant *Bellis perennis* is distributed widely in Europe and North Africa, and the whole flowering plant has been used for bruises, bleeding, muscular pain, purulent skin diseases, and rheumatism in European folk medicine [2][3]. This herbal medicine is also well-known as an ornamental plant, and its flowers and young leaves are edible as a salad. During the course of our studies on bioactive constituents from medicinal flowers [1-20], we found that the MeOH extract from the flowers of *B. perennis* was found to inhibit the increase of plasma triglyceride (TG) levels in olive-oil-loaded mice [2]. From the MeOH extract, 13 acylated saponin constituents, perennisosides I–VII [2] and perennisaponins A–F [3], were isolated, together with eight saponins and two glycosides [2][3].

Our continuing search now led to the isolation and characterization of seven new acylated oleanane-type triterpene oligoglycosides named perennisaponins G-M (1–7), which were obtained from the flowers of *B. perennis*. Furthermore, we examined the inhibitory effects against pancreatic lipase of perennisaponins 1–7.

Results and Discussion. – The flowers of *B. perennis* cultivated in Albania were treated with MeOH to give an extract (25.8% from the dried flowers), as described previously [2]. The MeOH extract, which was found to inhibit pancreatic lipase activity (IC_{50} 455 mg/ml), was partitioned between AcOEt and H₂O (1:1) to furnish an

© 2010 Verlag Helvetica Chimica Acta AG, Zürich

¹) For Part 28, see [1].

AcOEt-soluble fraction (6.7%) and an aqueous phase. The aqueous phase was subjected to column chromatography (*Diaion HP-20*, $H_2O \rightarrow MeOH$) to give H_2O -and MeOH-eluted fractions (12.5 and 6.4%), respectively [2]. The MeOH-eluted fraction was subjected to normal- and reversed-phase column chromatographies and finally HPLC to give **1** (0.124%), **2** (0.139%), **3** (0.0038%), **4** (0.060%), **5** (0.027%), **6** (0.0028%), and **7** (0.065%) (*Fig. 1*).

Polygalacic acid 3-(α -L-rhamnopyranoside) (**1a**)

Fig. 1. Perennisaponins G-M (1-7) isolated from Bellis perennis

Compound **1** was obtained as an amorphous powder with a negative optical rotation. The IR spectrum of **1** showed absorption bands at 1736 and 1638 cm⁻¹ ascribable to ester C=O and olefin moieties, and broad bands at 3450 and 1049 cm⁻¹, suggestive of an oligoglycoside structure. In the positive- and negative-ion-mode FAB-MS of **1**, quasi-molecular-ion peaks were observed at m/z 1327 ($[M + Na]^+$) and 1303 ($[M - H]^-$), respectively, and a positive-mode HR-FAB-MS analysis revealed the molecular formula of **1** to be C₆₃H₁₀₀O₂₈. On alkaline hydrolysis of **1** with 10% aqueous KOH in H₂O/1,4-dioxane 1:1, polygalacic acid 3-(α -L-rhamnopyranoside) (**1a**) [21] was obtained together with AcOH, which was identified by HPLC analysis of the

corresponding 4-nitrobenzyl derivative [3-7][18]. Treatment of 1 with 0.5% MeONa/ MeOH provided a deacyl derivative, bellissaponin BS1 (= $(2\beta, 3\beta, 4\alpha, 16\alpha)$)-3-[(6-deoxy- α -L-mannopyranosyl)oxy]-2.16.23-trihydroxyolean-12-en-28-oic acid O-6-deoxy- α -Lmannopyranosyl- $(1 \rightarrow 3)$ -O- β -D-xylopyranosyl- $(1 \rightarrow 4)$ -O- β -deoxy- α -L-mannopyranosyl- $(1 \rightarrow 2)$ -6-deoxy- β -D-galactopyranosyl ester; **1b**) [3]. The ¹H- and ¹³C-NMR data of 1 (Tables 1 and 2), which were assigned by various NMR experiments (including DEPT, DQF, HMQC, HMBC, and TOCSY) showed signals assignable to six Me s at δ (H) 0.93 (Me(29)), 1.03 (Me(30)), 1.17 (Me(26)), 1.23 (Me(24)), 1.58 (Me(25)), and 1.75 (Me(27)), an oxygenated CH₂ group at δ (H) 3.72 (2 br. s, CH₂(23)), three oxygenated CH groups at δ (H) 4.39 (br. s, H–C(3)), 4.72–4.76 (m, H–C(2)), and 5.16 (br. s, H-C(16)), an olefinic H-atom at $\delta(H)$ 5.64 (t-like, $J \approx 3$ Hz, H-C(12)), a fucopyranosyl moiety at $\delta(H)$ 1.24 (d, J = 6.4 Hz, Me(6")) and 6.02 (d, J = 8.3 Hz, H-C(1''), three rhamnopyranosyl moieties at $\delta(H)$ 1.60 (d, J = 6.0 Hz, Me(6')), 1.63 (d, J = 6.0 Hz, Me(6'''')), 1.75 (d, J = 6.2 Hz, Me(6''')), 5.76 (br. s, H - C(1')), 6.07 (br. s, H - C(1'))), 6.07 (br. s, H - C(1')), 6.07 (br. s, H - C(1'))), 6H-C(1''')), and 6.21 (br. s, H-C(1'''')), and a xylopyranosyl moiety at δ (H) 5.14 (d, J = 7.6 Hz, H-C(1^{''''})), together with two AcO groups at δ (H) 1.98 and 1.99 (2 s, 2 Me). Comparison of the ¹³C-NMR data of **1** with those of the deacetyl derivative **1b** revealed acetylation shifts around the 4"-position of the β -D-fucopyranosyl moiety (1: $\delta(C)$ 73.9 (C(3'')), 74.4 (C(4'')), and 70.4 (C(5'')); **1b**: $\delta(C)$ 76.5 (C(3'')), 73.1 (C(4'')), and 72.5 (C(5"))) and around the 2" -position of the inner α -L-rhamnopyranosyl moiety of the 28-O-sugars (1: $\delta(C)$ 98.8 (C(1''')), 73.3 (C(2''')), and 70.0 (C(3''')); 1b: $\delta(C)$ 101.4 (C(1''')), 71.9 (C(2''')), and 72.6 (C(3'''))). The positions of the two AcO groups in 1 were clarified on the basis of an HMBC experiment, which showed ${}^{1}H \rightarrow {}^{13}C$ longrange correlations between the following pairs as shown in Fig. 2: $\delta(H)$ 1.98 (Me of Ac) and 5.51 (br. s, H-C(4'') of Fuc)/ $\delta(C)$ 171.1 (C=O of Ac), and $\delta(H)$ 1.99 (Me of Ac) and 5.99-6.01 (m, H-C(2") of the inner Rha)/ δ (C) 170.4 (C=O of Ac). On the basis

Fig. 2. Selected HMBCs $(H \rightarrow C)$ of 1

of the above evidence, the structure of perennisaponin G (1) was determined as 3-*O*- α -L-rhamnopyranosylpolygalacic acid 28-[*O*- α -L-rhamnopyranosyl-(1 \rightarrow 3)-*O*- β -D-xylo-pyranosyl-(1 \rightarrow 4)-*O*-2-*O*-acetyl- α -L-rhamnopyranosyl-(1 \rightarrow 2)-4-*O*-acetyl- β -D-fuco-pyranosyl] ester.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	2	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(2)	4.72-4.76 (<i>m</i>)	4.70 - 4.74(m)	4.72-4.76 (<i>m</i>)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H-C(3)	4.39 (br. s)	4.38 (d, J = 2.8)	4.40 (d, J = 3.1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H - C(12)	5.64 (t-like, $J \approx 3$)	5.63 (<i>t</i> -like, $J \approx 3$)	5.65 (t-like, $J \approx 3$)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H - C(16)	5.16 (br. s)	5.16 (br. s)	5.16 (br. s)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H - C(18)	3.39 (<i>dd</i> -like)	3.41 (dd, J = 3.4, 14.4)	3.40 (<i>dd</i> -like)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$CH_{2}(23)$	3.72 (br. s)	3.70 (br. s)	3.71 (br. s)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Me(24)	1.23(s)	1.26(s)	1.24 (s)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Me(25)	1.58(s)	1.55(s)	1.59(s)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Me(26)	1.17(s)	1.14(s)	1.19 (s)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Me(27)	1.75(s)	1.75(s)	1.76(s)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Me(29)	0.93(s)	0.92(s)	0.93(s)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Me(30)	1.03(s)	1.03(s)	1.03 (s)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	3-O-Rha:			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H-C(1')	5.76 (br. s)	5.76 (br. s)	5.78 (br. s)
28-O-Sugars: Fue: $Fue:$ H-C(1'') $6.02 (d, J=8.3)$ $6.06 (d, J=6.9)$ $6.03 (d, J=8.3)$ $H-C(4'')$ $5.51 (br. s)$ $5.47 (br. s)$ $5.59 (br. d, J \approx 4)$ $Me(6'')$ $1.24 (d, J=6.4)$ $1.24 (d, J=6.2)$ $1.32 (d, J=6.4)$ $AcO-C(4'')$ $1.98 (s)$ $1.99 (s)$ $3HBO-C(4'')$: $CH_2(2)$ $2.68 (dd, J=5.2, 14.4)$, $H-C(3)$ $4.46-4.48 (m)$ $Me(4)$ $1.39 (d, J=7.6, 14.4)$ $Inner Rha:$ $H-C(1''')$ $6.07 (br. s)$ $6.09 (d, J=1.5)$ $H-C(2''')$ $5.99-6.01 (m)$ $5.00-5.02 (m)$ $5.99 (dd, J=1.5, 3.4)$ $H-C(3''')$ $4.79 (dd, J=3.4, 9.8)$ $5.87 (dd, J=2.7, 9.6)$ $4.78 (dd, J=3.6, 9.8)$ $Me(6''')$ $1.75 (d, J=6.2)$ $1.75 (d, J=6.1)$ $1.96 (s)$ $AcO-C(2''')$ $1.99 (s)$ $2.04 (s)$ $1.96 (s)$ $Xyl:$ $H-C(1'''')$ $5.14 (d, J=7.6)$ $4.98 (d, J=7.6)$ $5.15 (d, J=7.7)$ Terminal Rha: $H-C(1'''')$ $6.21 (br. s)$ $6.17 (br. s)$ $6.17 (br. s)$ $Me(6''''')$ $1.63 (d, J=6.0)$ $1.66 (d, J=6.2)$	Me(6')	1.60 (d, J = 6.0)	1.60 (d, J = 6.2)	1.62(d, J = 6.1)
Fuc: $H-C(1'')$ $6.02 (d, J=8.3)$ $6.06 (d, J=6.9)$ $6.03 (d, J=8.3)$ $H-C(4'')$ $5.51 (br. s)$ $5.47 (br. s)$ $5.59 (br. d, J\approx 4)$ $Me(6'')$ $1.24 (d, J=6.4)$ $1.24 (d, J=6.2)$ $1.32 (d, J=6.4)$ $AcO-C(4'')$ $1.98 (s)$ $1.99 (s)$ $1.32 (d, J=6.4)$ $AcO-C(4'')$: $CH_2(2)$ $2.68 (dd, J=5.2, 14.4),$ $H-C(3)$ $4.46-4.48 (m)$ $1.39 (d, J=7.6, 14.4)$ $H-C(1''')$ $6.07 (br. s)$ $6.07 (br. s)$ $6.09 (d, J=1.5)$ $H-C(2''')$ $5.99-6.01 (m)$ $5.00-5.02 (m)$ $5.99 (dd, J=1.5, 3.4)$ $H-C(3''')$ $4.79 (dd, J=3.4, 9.8)$ $5.87 (dd, J=2.7, 9.6)$ $4.78 (dd, J=3.6, 9.8)$ $Me(6''')$ $1.75 (d, J=6.2)$ $1.75 (d, J=6.1)$ $1.96 (s)$ $AcO-C(2''')$ $1.99 (s)$ $1.96 (s)$ $1.96 (s)$ $AcO-C(3''')$ $2.04 (s)$ $Xyl:$ $H-C(1'''')$ $5.14 (d, J=7.6)$ $4.98 (d, J=7.6)$ $5.15 (d, J=7.7)$ Terminal Rha: $H-C(1''''')$ $6.21 (br. s)$ $6.17 (br. s)$ $6.17 (br. s)$ $Me(6''''')$ $1.63 (d, J=6.0)$ $1.66 (d, J=6.2)$ $1.64 (d, J$	28-O-Sugars:			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Fuc:			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H - C(1'')	6.02 (d, J = 8.3)	6.06 (d, J = 6.9)	6.03 (d, J = 8.3)
Me(6'') $1.24 (d, J=6.4)$ $1.24 (d, J=6.2)$ $1.32 (d, J=6.4)$ AcO-C(4'') $1.98 (s)$ $1.99 (s)$ $3HBO-C(4'')$: $2.68 (dd, J=5.2, 14.4)$,CH2(2) $2.68 (dd, J=7.6, 14.4)$ H-C(3) $4.46-4.48 (m)$ Me(4) $1.39 (d, J=6.4)$ Inner Rha: $1.39 (d, J=6.4)$ H-C(1''') $6.07 (br. s)$ H-C(2''') $5.99-6.01 (m)$ $5.00-5.02 (m)$ $5.99 (dd, J=1.5, 3.4)$ H-C(3''') $4.79 (dd, J=3.4, 9.8)$ $5.87 (dd, J=2.7, 9.6)$ $4.78 (dd, J=3.6, 9.8)$ Me(6''') $1.75 (d, J=6.2)$ $AcO-C(2''')$ $1.99 (s)$ $AcO-C(3''')$ $2.04 (s)$ Xyl: $H-C(1'''')$ $H-C(1'''')$ $5.14 (d, J=7.6)$ $4.98 (d, J=7.6)$ $5.15 (d, J=7.7)$ Terminal Rha: $H-C(1'''')$ $H-C(1'''')$ $6.21 (br. s)$ $H-C(1'''')$ $6.21 (br. s)$ $H-C(1'''')$ $1.63 (d, J=6.0)$ $1.66 (d, J=6.2)$ $1.64 (d, J=6.1)$	H-C(4'')	5.51 (br. s)	5.47 (br. s)	5.59 (br. $d, J \approx 4$)
AcO-C(4")1.98 (s)1.99 (s) $3HBO-C(4")$:2.68 (dd, $J = 5.2, 14.4$), $CH_2(2)$ 2.68 (dd, $J = 7.6, 14.4$) $H-C(3)$ 4.46-4.48 (m) $Me(4)$ 1.39 (d, $J = 6.4$)Inner Rha:1.39 (d, $J = 6.4$) $H-C(1"'')$ 6.07 (br. s) 6.07 (br. s)6.07 (br. s) $H-C(2"')$ 5.99 - 6.01 (m) $5.00-5.02$ (m)5.99 (dd, $J = 1.5, 3.4$) $H-C(3"')$ 4.79 (dd, $J = 3.4, 9.8$) $S.87$ (dd, $J = 2.7, 9.6$)4.78 (dd, $J = 3.6, 9.8$) $Me(6"'')$ 1.75 (d, $J = 6.2$) $AcO-C(2"')$ 1.99 (s) $AcO-C(3''')$ 2.04 (s) $Xyl:$ $H-C(1"'')$ $H-C(1"'')$ 5.14 (d, $J = 7.6$) $H-C(1"'')$ 6.21 (br. s) 6.17 (br. s) $Me(6"'')$ 1.63 (d, $J = 6.0$) 1.66 (d, $J = 6.2$) 1.64 (d, $J = 6.1$)	Me(6")	1.24 (d, J = 6.4)	1.24 (d, J = 6.2)	1.32(d, J = 6.4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	AcO-C(4'')	1.98(s)	1.99(s)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3HBO-C(4''):			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_2(2)$			2.68 (dd, J = 5.2, 14.4),
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,			2.78 (dd, J = 7.6, 14.4)
Me(4) $1.39 (d, J = 6.4)$ Inner Rha: $H - C(1''')$ $6.07 (br. s)$ $6.07 (br. s)$ $6.09 (d, J = 1.5)$ $H - C(2''')$ $5.99 - 6.01 (m)$ $5.00 - 5.02 (m)$ $5.99 (dd, J = 1.5, 3.4)$ $H - C(3''')$ $4.79 (dd, J = 3.4, 9.8)$ $5.87 (dd, J = 2.7, 9.6)$ $4.78 (dd, J = 3.6, 9.8)$ $Me(6''')$ $1.75 (d, J = 6.2)$ $1.75 (d, J = 6.2)$ $1.75 (d, J = 6.1)$ $AcO - C(2''')$ $1.99 (s)$ $1.96 (s)$ $AcO - C(3''')$ $2.04 (s)$ $1.96 (s)$ $Xyl:$ $H - C(1'''')$ $5.14 (d, J = 7.6)$ $4.98 (d, J = 7.6)$ $5.15 (d, J = 7.7)$ Terminal Rha: $H - C(1'''')$ $6.21 (br. s)$ $6.17 (br. s)$ $Me(6'''')$ $1.63 (d, J = 6.0)$ $1.66 (d, J = 6.2)$ $1.64 (d, J = 6.1)$	H-C(3)			4.46 - 4.48 (m)
Inner Rha: $6.07 (br. s)$ $6.07 (br. s)$ $6.09 (d, J = 1.5)$ $H-C(1''')$ $5.99 - 6.01 (m)$ $5.00 - 5.02 (m)$ $5.99 (dd, J = 1.5, 3.4)$ $H-C(2''')$ $5.99 - 6.01 (m)$ $5.00 - 5.02 (m)$ $5.99 (dd, J = 1.5, 3.4)$ $H-C(3''')$ $4.79 (dd, J = 3.4, 9.8)$ $5.87 (dd, J = 2.7, 9.6)$ $4.78 (dd, J = 3.6, 9.8)$ $Me(6''')$ $1.75 (d, J = 6.2)$ $1.75 (d, J = 6.1)$ $AcO-C(2''')$ $1.99 (s)$ $1.96 (s)$ $AcO-C(3''')$ $2.04 (s)$ $Xyl:$ $H-C(1'''')$ $5.14 (d, J = 7.6)$ $4.98 (d, J = 7.6)$ $H-C(1'''')$ $5.14 (d, J = 7.6)$ $4.98 (d, J = 7.6)$ $5.15 (d, J = 7.7)$ Terminal Rha: $H-C(1'''')$ $6.21 (br. s)$ $6.17 (br. s)$ $Me(6'''')$ $1.63 (d, J = 6.0)$ $1.66 (d, J = 6.2)$ $1.64 (d, J = 6.1)$	Me(4)			1.39(d, J = 6.4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Inner Rha:			
H-C(2''') 5.99-6.01 (m) 5.00-5.02 (m) 5.99 (dd, $J=1.5, 3.4$) $H-C(3''')$ 4.79 (dd, $J=3.4, 9.8$) 5.87 (dd, $J=2.7, 9.6$) 4.78 (dd, $J=3.6, 9.8$) $Me(6''')$ 1.75 (d, $J=6.2$) 1.75 (d, $J=6.1$) 1.96 (s) $AcO-C(2''')$ 1.99 (s) 2.04 (s) 1.96 (s) $AcO-C(3''')$ 2.04 (s) 1.98 (d, $J=7.6$) 5.15 (d, $J=7.7$) Terminal Rha: H-C(1'''') 6.21 (br. s) 6.17 (br. s) $Me(6'''')$ 1.63 (d, $J=6.0$) 1.66 (d, $J=6.2$) 1.64 (d, $J=6.1$)	H - C(1''')	6.07 (br. s)	6.07 (br. s)	6.09 (d, J = 1.5)
H-C(3''') $4.79 (dd, J=3.4, 9.8)$ $5.87 (dd, J=2.7, 9.6)$ $4.78 (dd, J=3.6, 9.8)$ $Me(6''')$ $1.75 (d, J=6.2)$ $1.75 (d, J=6.2)$ $1.75 (d, J=6.1)$ $AcO-C(2''')$ $1.99 (s)$ $1.99 (s)$ $1.96 (s)$ $AcO-C(3''')$ $2.04 (s)$ $1.96 (s)$ $Xyl:$ $H-C(1'''')$ $5.14 (d, J=7.6)$ $4.98 (d, J=7.6)$ $5.15 (d, J=7.7)$ Terminal Rha: $H-C(1'''')$ $6.21 (br. s)$ $6.17 (br. s)$ $Me(6'''')$ $1.63 (d, J=6.0)$ $1.66 (d, J=6.2)$ $1.64 (d, J=6.1)$	H - C(2''')	5.99 - 6.01 (m)	5.00-5.02(m)	5.99 (dd, J = 1.5, 3.4)
Me(6''') $1.75 (d, J=6.2)$ $1.75 (d, J=6.2)$ $1.75 (d, J=6.1)$ AcO-C(2''') $1.99 (s)$ $1.99 (s)$ $1.96 (s)$ AcO-C(3''') $2.04 (s)$ $1.96 (s)$ Xyl: $H-C(1'''')$ $5.14 (d, J=7.6)$ $4.98 (d, J=7.6)$ $5.15 (d, J=7.7)$ Terminal Rha: $H-C(1'''')$ $6.21 (br. s)$ $6.17 (br. s)$ Me(6'''') $1.63 (d, J=6.0)$ $1.66 (d, J=6.2)$ $1.64 (d, J=6.1)$	H - C(3''')	4.79 (dd, J = 3.4, 9.8)	5.87 (dd, J = 2.7, 9.6)	4.78 (dd, J = 3.6, 9.8)
AcO-C(2''') $1.99(s)$ $1.96(s)$ $AcO-C(3''')$ $2.04(s)$ $Xyl:$ $H-C(1'''')$ $5.14(d, J=7.6)$ $H-C(1'''')$ $5.14(d, J=7.6)$ $4.98(d, J=7.6)$ $Ferminal Rha:$ $H-C(1'''')$ $H-C(1'''')$ $6.21(br. s)$ $6.17(br. s)$ $Me(6'''')$ $1.63(d, J=6.0)$ $1.66(d, J=6.2)$ $1.64(d, J=6.1)$	Me(6''')	1.75(d, J = 6.2)	1.75(d, J = 6.2)	1.75(d, J = 6.1)
AcO-C(3''') 2.04 (s) $Xyl:$ $H-C(1'''')$ $H-C(1'''')$ $5.14 (d, J=7.6)$ $H-C(1'''')$ $6.21 (br. s)$ $H-C(1'''')$ $1.63 (d, J=6.0)$ $H-C(1'''')$ $1.64 (d, J=6.1)$	AcO-C(2''')	1.99(s)		1.96(s)
Xyl: $H-C(1'''')$ $5.14 (d, J=7.6)$ $4.98 (d, J=7.6)$ $5.15 (d, J=7.7)$ Terminal Rha: $H-C(1'''')$ $6.21 (br. s)$ $6.17 (br. s)$ Me(6'''') $1.63 (d, J=6.0)$ $1.66 (d, J=6.2)$ $1.64 (d, J=6.1)$	AcO - C(3''')		2.04(s)	
H-C(1'''') $5.14 (d, J=7.6)$ $4.98 (d, J=7.6)$ $5.15 (d, J=7.7)$ Terminal Rha: $H-C(1'''')$ $6.21 (br. s)$ $6.17 (br. s)$ $Me(6'''')$ $1.63 (d, J=6.0)$ $1.66 (d, J=6.2)$ $1.64 (d, J=6.1)$	Xvl:		~ /	
Terminal Rha: 6.21 (br. s) 6.21 (br. s) 6.17 (br. s) $H-C(1'''')$ $1.63 (d, J=6.0)$ $1.66 (d, J=6.2)$ $1.64 (d, J=6.1)$	H–C(1'''')	5.14 (d, J = 7.6)	4.98 (d, J = 7.6)	5.15(d, J = 7.7)
H-C(1'''')6.21 (br. s)6.21 (br. s)6.17 (br. s) $Me(6'''')$ 1.63 (d, J=6.0)1.66 (d, J=6.2)1.64 (d, J=6.1)	Terminal Rha:			
Me($6'''''$) 1.63 ($d, J = 6.0$) 1.66 ($d, J = 6.2$) 1.64 ($d, J = 6.1$)	H-C(1'''')	6.21 (br. <i>s</i>)	6.21 (br. s)	6.17 (br. s)
	Me(6''''')	1.63 (d, J = 6.0)	1.66 (d, J = 6.2)	1.64(d, J = 6.1)

Table 1. Selected ¹H-NMR Data (600 MHz, 40°, (D₅)pyridine) of 1-3. δ in ppm, J in Hz.

Compound **2** was also obtained as an amorphous powder with a negative optical rotation. The IR spectrum of **2** showed absorption bands at 3450, 1734, 1638, and 1049 cm⁻¹, ascribable to OH, ester C=O, olefin, and ether functions. The molecular formula of **2**, $C_{63}H_{100}O_{28}$, was determined from the positive- and negative-ion-mode

	1	2	3		1	2	3
C(1)	44.8	44.8	44.8	28-O-Sugars:			
C(2)	71.1	71.1	71.1	Fuc:			
C(3)	81.4	81.4	81.5	C(1")	94.3	94.2	94.3
C(4)	43.0	43.0	43.0	C(2'')	75.1	76.8	75.2
C(5)	47.6	47.7	47.6	C(3")	73.9	74.1	73.5
C(6)	18.3	18.3	18.3	C(4'')	74.4	74.4	74.4
C(7)	33.2	33.2	33.3	C(5")	70.4	70.3	70.5
C(8)	40.2	40.2	40.3	C(6'')	16.4	16.4	16.5
C(9)	47.5	47.5	47.5	AcO-C(4'')	171.1, 20.7	171.1, 20.7	
C(10)	37.2	37.1	37.2	3HBO - C(4''):			
C(11)	24.1	24.1	24.1	C(1)			172.3
C(12)	122.8	122.8	122.8	C(2)			45.0
C(13)	144.2	144.2	144.2	C(3)			64.8
C(14)	42.3	42.2	42.3	C(4)			24.0
C(15)	36.2	36.1	36.2	Inner Rha:			
C(16)	74.1	74.1	74.1	C(1''')	98.8	102.7	98.7
C(17)	49.7	49.7	49.5	C(2''')	73.3	69.4	73.2
C(18)	41.6	41.6	41.6	C(3''')	70.0	75.5	70.1
C(19)	47.3	47.3	47.3	C(4''')	83.8	77.9	83.8
C(20)	30.7	30.8	30.8	C(5''')	68.5	68.9	68.5
C(21)	35.9	35.9	36.0	C(6''')	18.6	19.2	18.5
C(22)	32.0	31.9	32.0	AcO-C(2''')	170.4, 20.9		170.4, 20.9
C(23)	65.3	65.2	65.3	AcO-C(3''')		170.9, 21.4	
C(24)	14.9	15.0	15.0	Xyl:			
C(25)	17.7	17.7	17.8	C(1'''')	106.8	105.8	106.8
C(26)	17.7	17.6	17.7	C(2'''')	76.2	75.0	76.2
C(27)	27.1	27.1	27.1	C(3'''')	83.3	83.3	83.4
C(28)	176.1	176.2	176.2	C(4'''')	69.2	69.8	69.3
C(29)	33.1	33.1	33.1	C(5'''')	67.3	67.1	67.3
C(30)	24.5	24.6	24.6	Terminal Rha:			
3-O-Rha:				C(1''''')	102.6	102.6	102.6
C(1')	104.2	104.1	104.2	C(2'''')	72.5	72.5	72.5
C(2')	72.4	72.4	72.5	C(3''''')	72.6	72.7	72.6
C(3')	72.7	72.7	72.8	C(4'''')	73.9	73.9	74.0
C(4')	73.2	73.5	74.0	C(5''''')	69.9	69.8	70.0
C(5')	70.3	70.3	70.3	C(6'''')	18.5	18.6	18.6
CIG	10.6	10.6	10.6	. ,			

Table 2. ¹³C-NMR Data of **1**-3. At 150 MHz, 40°, in (D₅)pyridine; δ in ppm.

FAB-MS $(m/z \ 1327 \ ([M+Na]^+)$ and 1303 $([M-H]^-)$, resp.) and by positive-ionmode HR-FAB-MS, which was the same as that of **1**. Alkaline hydrolysis of **2** with 10% aqueous KOH in H₂O/1,4-dioxane 1:1 liberated **1a** together with AcOH. Treatment of **2** with 0.5% MeONa/MeOH yielded **1b**. The ¹H- and ¹³C-NMR spectra of **2** (*Tables 1* and 2) indicated the presence of the following functions: a polygalacic acid part (six Me *s* at δ (H) 0.92 (Me(29)), 1.03 (Me(30)), 1.14 (Me(26)), 1.26 (Me(24)), 1.55 (Me(25)), and 1.75 (Me(27)), an oxygenated CH₂ group at δ (H) 3.70 (br. *s*, CH₂(23)), three oxygenated CH groups at δ (H) 4.38 (*d*, *J* = 2.8 Hz, H–C(3)), 4.70–4.74 (*m*, H–C(2)), and 5.16 (br. *s*, H–C(16)), and an olefinic H-atom at δ (H) 5.63 (*t*-like, $J \approx 3$ Hz, H–C(12))), a fucopyranosyl moiety at $\delta(H)$ 1.24 (d, J = 6.2 Hz, Me(6")) and 6.06 (d, J = 6.9 Hz, H–C(1")), three rhamnopyranosyl moieties at $\delta(H)$ 1.60 (d, J = 6.2 Hz, Me(6')), 1.66 (d, J = 6.2 Hz, Me(6"")), 1.75 (d, J = 6.2 Hz, Me(6"')), 5.76 (br. s, H-C(1'')), 6.07 (br. s, H-C(1''')), and 6.21 (br. s, H-C(1'''')), and a xylopyranosyl moiety at $\delta(H)$ 4.98 (d, J = 7.6 Hz, H–C(1"'')), together with two AcO groups at $\delta(H)$ 1.99 and 2.04 (2s, 2 Me). The ¹H- and ¹³C-NMR data of **2** were superimposable on those of **1**, except for the signals due to the part around the inner Rha unit of the 28-*O*-sugars. The positions of the two AcO groups in **2** were determined by an HMBC experiment, which showed the following ¹H \rightarrow ¹³C long-range correlations: $\delta(H)$ 1.99 (s, Me of Ac) and 5.47 (br. s, H-C(4'') of Fuc)/ $\delta(C)$ 171.1 (C=O of Ac), and $\delta(H)$ 2.04 (s, Me of Ac) and 5.87 (dd, J = 2.7, 9.6 Hz, H-C(3''') of the inner Rha)/ $\delta(C)$ 170.9 (C=O of Ac). Consequently, the structure of **2** was elucidated as 3-*O*- α -L-rhamnopyranosyl-(1 \rightarrow 3)-*O*- β -D-xylopyranosyl-(1 \rightarrow 4)-*O*-3-*O*-acetyl- α -L-rhamnopyranosyl-(1 \rightarrow 2)-4-*O*-acetyl- β -D-fucopyranosyl] ester.

Compound 3 was also obtained as an optically active amorphous powder. The positive- and negative-ion-mode FAB-MS of 3 showed quasi-molecular-ion peaks at m/z 1371 ($[M + Na]^+$) and 1347 ($[M - H]^-$), respectively. The positive-ion-mode HR-FAB-MS of **3** revealed the molecular formula to be $C_{65}H_{104}O_{29}$. Alkaline hydrolysis of **3** with 10% aqueous KOH in $H_2O/1,4$ -dioxane 1:1 liberated **1a** and two organic acids, AcOH and 3-hydroxybutanoic acid (3HBOH), which were identified by HPLC analysis of the corresponding 4-nitrobenzyl derivatives. In addition, treatment of 3 with 0.5% MeONa/MeOH gave 1b, together with methyl (+)-(3S)-3-hydroxybutanoate [22], which was identified by HPLC and an optical-rotation detector [23-27]. The Hand C-atom signals in the ¹H- and ¹³C-NMR spectra of 3 (Tables 1 and 2, resp.) were superimposable on those of 1, except for the signals due to the acyl groups: an AcO group at $\delta(H)$ 1.96 (s, Me of Ac) and a (3S)-3-hydroxybutanoyl (3HB) group at $\delta(H)$ 1.39 (d, J = 6.4 Hz, Me(4)), 2.68 (dd, J = 5.2, 14.4 Hz, 1 H–C(2)), 2.78 (dd, J = 7.6, 14.4 Hz, 1 H-C(2)), and 4.46-4.48 (m, H-C(3)). In the HMBC experiment with 3, the following ${}^{1}H \rightarrow {}^{13}C$ long-range correlations were observed: CH₂(2) of 3HB, H-C(3) of 3HB, and $\delta(H)$ 5.59 (br. $d, J \approx 4$ Hz, H-C(4'') of Fuc)/ $\delta(C)$ 172.3 (C=O of 3HB); and $\delta(H)$ 1.96 (s, Me of Ac) and 5.99 (dd, J = 1.5, 3.4 Hz, H - C(2'')) of the inner Rha) $(\delta(C)$ 170.4 (C=O of Ac). Thus, the connectivities of the acyloxy groups in **3** were elucidated. On the basis of above-mentioned evidence, the structure of 3 was determined as 3-O-a-L-rhamnopyranosylpolygalacic acid 28-[O-a-L-rhamnopyranosyl- $(1 \rightarrow 3)$ -O- β -D-xylopyranosyl- $(1 \rightarrow 4)$ -O-2-O-acetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -4-O-(3S)-3-hydroxybutanoyl- β -D-fucopyranosyl] ester.

Compounds 4 and 5 were obtained as amorphous powders with negative optical rotations. The molecular formula of both 4 and 5, $C_{67}H_{106}O_{30}$, was determined from the positive- and negative-ion-mode FAB-MS at m/z 1413 ($[M + Na]^+$) and 1389 ($[M - H]^-$) and by positive-ion-mode HR-FAB-MS measurement. Alkaline hydrolysis of 4 and 5 with 10% aqueous KOH in H₂O/1,4-dioxane 1:1 provided **1a** and two organic acids, AcOH and 3HBOH, respectively. Treatment of each 4 and 5 with 0.5% MeONa/MeOH gave **1b**, together with methyl (+)-(3S)-3-hydroxybutanoate, respectively. The H- and C-atom signals in the ¹H- and ¹³C-NMR spectra of **4** (*Tables 3* and 4) indicated the presence of an aglycon part, containing six Me s at $\delta(H)$ 0.95 (Me(29)), 1.06 (Me(30)), 1.18 (Me(26)), 1.22 (Me(24)), 1.58 (Me(25)), and 1.75 (Me(27)), a CH₂ and

three CH groups bearing an O-atom function at $\delta(H)$ 3.69 (br. s, CH₂(23)), 4.35 (d, J = 3.5 Hz, H-C(3), 4.68-4.72 (m, H-C(2)), and 5.12 (br. s, H-C(16)), an olefinic Hatom at $\delta(H)$ 5.65 (t-like, $J \approx 3$ Hz, H - C(12)), and a fucopyranosyl moiety at $\delta(H)$ 1.25 (d, J = 6.3 Hz, Me(6'')) and 5.99 (d, J = 8.0 Hz, H - C(1'')), three rhamnopyranosyl moieties at δ (H) 1.60 (d, J = 6.1 Hz, Me(6')), 1.67 (d, J = 6.3 Hz, Me(6''''')), 1.75 (d, J = 6.3 Hz, Me(6'''')), 1.75 (d, J = 6.3 Hz, Me(6''''')), 1.75 (d, J = 6.3 Hz, Me(6''''')), 1.75 (d, J = 6.3 Hz, Me(6'''')), 1.75 (d, J = 6.3 Hz, Me(6''''')), 1.75 (d, J = 6.3 Hz, Me(6'''')), 1.75 (d, J = 6.3 Hz, Me(6''''')), 1.75 (d, J = 6.3 Hz, Me(6'''')), 1.75 (d, J = 6.3 Hz, Me(6''''')), 1.75 (d, J = 6.3 Hz, Me(6'''')), 1.75 (d, J = 6.3 Hz, Me(6'''')), 1.75 (d, J = 6.3 Hz, Me(6''''')), 1.75 (d, J = 6.3 Hz, Me(6'''''')), 1.75 (d, J = 6.3 Hz, Me(6'''''')), 1.75 (d, J = 6.3 Hz, Me(6'''''')), 1.75 (d, J = 6.3 Hz, Me(6''''')), 1.75 (d, J = 6.3 Hz, Me(6'''''')), 1.75 (d, J = 6.3 Hz, Me(6''''')), 1.75 (d, J = 6.3 Hz, Me(6''''')), 1.75 (d, J = 6.3 Hz, Me(6'''''')), 1.75 (d, J = 6.3 Hz, Me(6'''''')), 1.75 (d, J = 6.3 Hz, Me(6'''''')), 1.75 (d, J = 6.3 Hz, Me(6''''')), 1.75 (d, J = 6.3 Hz, Me(6''''')), 1.75 (d, J = 6.3 Hz, Me(6'''''')), 1.75 (d, J = 6.3 Hz, Me(6''''')), 1.75 (d, J = 6.3 Hz, Me(6'''')), 1.75 (d, J = 6.3 Hz, Me(6''')), 1.75 (d6.4 Hz, Me(6''), 5.71 (br. s, H-C(1')), 6.04 (d, J = 1.8 Hz, H-C(1'')), and 6.08 (br. s, H = 1.8 Hz, H = 1.8H-C(1"")), and a xylopyranosyl moiety at $\delta(H)$ 5.10 (d, J=7.7 Hz, H-C(1"")), together with two AcO groups at $\delta(H)$ 1.98 (2s, 2 Me) and a 3 HBO group at $\delta(H)$ 1.30 (d, J = 6.3 Hz, Me(4)), 2.68 (dd, J = 5.5, 15.8 Hz, 1 H - C(2)), 2.78 (dd, J = 7.5, 15.8 Hz, 1 H - C(2))1 H-C(2)), and 5.49-5.51 (m, H-C(3)). The H- and C-atom signals in the ¹H- and ¹³C-NMR spectra of **4** resembled those of **3**, except for the signals due to the additional AcO group. Comparison of the ¹³C-NMR spectra of 4 with those of 3 revealed an acetylation shift around the 3-position of the 3HBO-C(4'') group (4: $\delta(C)$ 40.8 (C(2)), 67.5 (C(3)), and 19.9 (C(4)); **3**: δ (C) 45.0 (C(2)), 64.8 (C(3)), and 24.0 (C(4))). The connectivity of the above-mentioned AcO group in 4 was clarified by an HMBC experiment, which showed ${}^{1}\text{H} \rightarrow {}^{13}\text{C}$ long-range correlations between $\delta(\text{H})$ 1.98 (s, Me of Ac) and H–C(3) of 3HBO–C(4") and δ (C) 170.0 (C=O of Ac). In turn, the H- and C-atom signals in the ¹H- and ¹³C-NMR spectra of 5 (*Tables 3* and 4) resembled those of 4, except for the signals due to the inner Rha of the 28-O-sugars. The position of an AcO group at the inner Rha of 5 was established by an HMBC experiment, which showed ¹H \rightarrow ¹³C long-range correlations between δ (H) 2.05 (s, Me of Ac) and 5.84 (dd, J = 2.5, 8.9 Hz, H - C(3''') of the inner Rha) and $\delta(C)$ 170.9 (C=O of Ac). On the basis of the above-mentioned evidence, the structures of 4 and 5 were elucidated to be 3-Oa-L-rhamnopyranosylpolygalacic acid $28-\{O-\alpha-L-rhamnopyranosyl-(1 \rightarrow 3)-O-\beta-D-xy$ lopyranosyl- $(1 \rightarrow 4)$ -O-2-O-acetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -4-O-[(3S)-3-(acetyloxy)butanoyl]- β -D-fucopyranosyl} ester and 3-O- α -L-rhamnopyranosylpolygalacic acid 28-{O- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -O- β -D-xylopyranosyl- $(1 \rightarrow 4)$ -O-3-O-acetyl- α -Lrhamnopyranosyl- $(1 \rightarrow 2)$ -4-O-[(3S)-3-(acetyloxy)butanonyl]- β -D-fucopyranosyl $\}$ ester, respectively.

The molecular formulas of compound 6, $C_{69}H_{110}O_{31}$, and compound 7, $C_{73}H_{116}O_{33}$, were determined from their respective positive- and negative-ion-mode FAB-MS and by positive-ion-mode HR-FAB-MS data. Alkaline hydrolysis of 6 and 7 with 10% aqueous KOH in H₂O/1,4-dioxane 1:1 provided 1a and two organic acids, AcOH and 3HBOH, respectively. Treatment of 6 and 7 with 0.5% MeONa/MeOH gave 1b, together with (+)-(3S)-3-hydroxybutanoic acid. The H- and C-atom signals in the ¹Hand 13 C-NMR spectra of 6 (*Tables 3* and 4) showed signals assignable to a bellissaponin BS1 (1b) moiety, an AcO group at $\delta(H)$ 1.99 (s, Me) and two 3HBO groups at $\delta(H)$ 1.35 (d, J = 6.2 Hz, Me(4)), 1.38 (d, J = 6.9 Hz, Me(4')), 2.61 – 2.65 and 2.71 – 2.75 $(2 m, 10^{-1})$ $CH_2(2')$, 2.68 – 2.72 and 2.82 – 2.86 (2 m, $CH_2(2)$), 4.53 – 4.57 (m, H–C(3')), and 5.59 – 5.61 (m, H-C(3)). The connectivities of the acyl moieties in 6 were determined through an HMBC experiment, which exhibited ${}^{1}H \rightarrow {}^{13}C$ long-range correlations between the following pairs: $\delta(H)$ 1.99 (s, Me of Ac) and 6.01–6.03 (m, H–C(2''') of the inner Rha)/ δ (C) 170.5 (C=O of Ac), CH₂(2) of 3HBO-C(4"), H-C(3) of 3HBO-C(4"), and δ (H) 5.53 (br. $d, J \approx 3$ Hz, H-C(4") of Fuc)/ δ (C) 170.8 (C=O of 3HBO-C(4")), and CH₂(2') of 3HBO-C(3), H-C(3') of 3HBO-C(3), and H-C(3) of $3HBO-C(4'')/\delta(C)$ 171.3 (C=O of 3HBO-C(3)). By comparison of

)	Helvetica Chimica Acta – Vol. 93 (2010)	
	Table 3. Selected ¹ H-NMR Data (600 MHz, 40°, (D ₅)pyridine) of 4–7. δ in ppm, J in Hz.	

	4	5	6	7
H-C(2)	4.68–4.72 (<i>m</i>)	4.71 (br. $d, J \approx 3$)	4.74-4.78 (<i>m</i>)	4.70 (br. s)
H-C(3)	4.35(d, J = 3.5)	4.39 (d, J = 2.9)	4.41 (br. s)	4.36(d, J = 3.2)
H-C(12)	5.65 (<i>t</i> -like, $J \approx 3$)	5.65 (<i>t</i> -like, $J \approx 3$)	5.67 (<i>t</i> -like, $J \approx 3$)	5.63 (<i>t</i> -like, $J \approx 3$)
H - C(16)	5.12 (br. s)	5.14 (br. s)	5.16 (br. s)	5.12 (br. s)
H - C(18)	3.39 (dd, J = 4.3, 14.1)	3.40 (dd, J = 3.4, 11.9)	3.41 (dd, J = 4.2, 13.7)	3.40 (<i>dd</i> -like)
$CH_{2}(23)$	3.69 (br. s)	3.70 (br. s)	3.72 (br. s)	3.70 (br. s)
Me(24)	1.22(s)	1.24 (s)	1.25(s)	1.25 (s)
Me(25)	1.58 (s)	1.57 (s)	1.60(s)	1.59 (s)
Me(26)	1.18 (s)	1.17 (s)	1.19 (s)	1.18 (s)
Me(27)	1.75 (s)	1.75 (s)	1.76(s)	1.75 (s)
Me(29)	0.95(s)	0.94(s)	0.94(s)	0.94(s)
Me(30)	1.06(s)	1.07(s)	1.04(s)	1.06 (s)
3-0-Rha:				
H-C(1')	5.71 (br. s)	5.72 (br. s)	5.79 (br. s)	5.72 (br. s)
Me(6')	1.60 (d, J = 6.1)	1.60 (d, J = 6.0)	1.62 (d, J = 6.2)	1.60 (d, J = 6.0)
28-O-Sugars:			(, • •)	
Fuc:				
H - C(1'')	5.99(d, J = 8.0)	6.03 (d, J = 7.6)	6.02 (d, J = 8.2)	6.00 (d, J = 8.0)
H-C(4'')	5.50 (br. $d, J \approx 4$)	5.48 (br. $d, J \approx 3$)	5.53 (br. $d, J \approx 3$)	5.50 (br. s)
Me(6")	1.25(d, J = 6.3)	1.25(d, J = 6.0)	1.27 (d, J = 6.2)	1.25(d, J = 6.3)
3HBO-C(4''):				
$CH_2(2)$	2.68 (dd, J = 5.5, 15.8),	2.68 (dd , $J = 4.6, 13.1$),	2.68 - 2.72 (m).	$2.65 - 2.70 \ (m)^{a}$
- 2()	2.78 (dd, J = 7.5, 15.8)	2.78 (dd, J = 6.2, 13.1)	2.82 - 2.86 (m)	$2.74 - 2.81 (m)^{b}$
H-C(3)	5.49 - 5.51 (m)	5.50 - 5.52 (m)	5.59 - 5.61 (m)	$5.52 - 5.56 (m)^{\circ}$
Me(4)	1.30 (d, J = 6.3)	1.30 (d, J = 6.3)	1.35(d, J = 6.2)	$1.34 (d, J = 6.3)^{d}$
AcO-C(3)	1.98(s)	2.00(s)		
3HBO-C(3):		(.)		
$CH_2(2')$			2.61 - 2.65 (m).	$2.65 - 2.70 \ (m)^{a}$
- 2()			2.71 - 2.75 (m)	$2.74 - 2.81 (m)^{b}$
H-C(3')			4.53 - 4.57 (m)	$5.52 - 5.56 (m)^{\circ}$
Me(4')			1.38 (d I = 6.9)	$1.31 (d I = 6.3)^{d}$
3HBO - C(3')				
CH ₂ (2")				260(dd I = 52149)
$CII_2(2)$				$2.74 - 2.81 (m)^{b}$
H - C(3'')				452 - 454(m)
Me(4'')				1.38 (d I = 6.1)
Inner Rha				100 (0,0 011)
H - C(1''')	6.04 (d I = 1.8)	6.03 (br. s)	6.10 (br. s)	6.05 (br. s)
H - C(2''')	5.94 (dd I = 1.8 3.5)	4.95 - 4.97 (m)	6.01 - 6.03 (m)	5.94 (dd I = 1.5 3.2)
H = C(3''')	473 (dd I = 35.94)	5.84 (dd I = 2.5.8.9)	480 - 484(m)	474 (dd, I = 32, 95)
Me(6''')	1.75 (d u, y = 5.5, y, 1) 1.75 (d $I = 6.4$)	1.74 (d I - 6.4)	1.00 + 1.01 (m) 1.78 (d. $I = 6.8$)	1.75 (d I - 64)
AcO = C(2''')	1.75 (a, b = 0.4) 1.98 (s)	1.7 + (u, v = 0.4)	1.70(a, b = 0.0) 1.99(c)	1.79(a, b = 0.4) 1.99(s)
AcO - C(3''')	1.90 (3)	2.05(s)	1.99 (3)	1.99 (3)
Yvl:		2.05 (5)		
$H_{-}C(1''')$	5 10 (d I - 77)	4.95 (d I - 7.6)	516(d I - 68)	510(dI-77)
Terminal Rha	5.10(u, J - 7.7)	$\pi.55(u, s - 7.0)$	5.10(u, s - 0.0)	5.10(u, j - 7.7)
H-C(1'''')	6.08 (br. s)	6.13 (br. s)	6.18 (br. s)	6.08 (br. s)
$M_{0}(6''''')$		()		
IVIC(O)	1.67 (d, J = 6.3)	1.65 (d, J = 6.2)	1.65 (d, J = 6.2)	1.62 (d, J = 6.3)

^a)^b)^c) Overlapped. ^d) May be interchangeable within the same column.

Table 4.	$^{13}C-NMR$	Data of 4-	 At 150 MHz, 	40°, in (I	D₅)pyridine; å	in ppm.
----------	--------------	------------	---------------------------------	------------	----------------	---------

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	5	6	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)-Sugars:				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. –				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	′)	94.4	94.2	94.3	94.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·)	75.0	76.7	74.9	75.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·)	73.3	73.4	73.2	73.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·)	74.8	74.7	74.7	74.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	′)	70.3	70.3	70.3	70.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·)	16.4	16.4	16.4	16.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CO - C(4''):				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)	170.7	170.7	170.8	170.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)	40.8	40.8	40.7	40.7 ^a)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)	67.5	67.5	67.4	67.9 ^b)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)	19.9	19.8	19.8	19.8°)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-C(3)	170.0, 21.1	170.1, 21.1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HBO-C(3):				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1')			171.3	169.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2')			45.2	41.2 ^a)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3')			64.4	67.6 ^b)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(4')			23.9	19.9°)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 HBO-C(3'	'):			,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1")	, ,			171.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2")				45.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3")				64.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4")				23.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r Rha:				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	")	98.8	102.5	98.7	98.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	″)	73.3	69.5	73.2	73.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	″)	70.1	75.5	70.1	70.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	″)	84.0	77.9	83.7	83.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	")	68.6	68.9	68.6	68.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	″)	18.5	19.1	18.5	18.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-C(2''')	170.4, 20.9		170.5, 20.9	170.4, 20.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-C(3''')		170.9, 21.3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	″″)	106.8	105.7	106.7	106.8
C(6') 18.6 18.5 18.6 18.6 C(3' C(4' C(5' Term C(1' C(2' C(3'	‴)	76.1	75.0	76.2	76.1
C(4' C(5' <i>Tern</i> C(1' C(2' C(3'	‴́)	83.7	83.6	83.3	83.7
C(5' <i>Tern</i> C(1' C(2' C(3'	‴)	69.3	69.8	69.3	69.3
Tern C(1' C(2' C(3'	‴)	67.3	67.1	67.3	67.3
C(1' C(2' C(3'	inal Rha:				
C(2' C(3'	"")	102.6	102.7	102.6	102.6
C(3'	""´)	72.4	72.4	72.4	72.4
- 1 -	‴́)	72.6	72.7	72.6	72.6
C(4'	‴″́)	74.0	74.0	74.0	74.0
C(5'	‴″́)	70.0	69.8	70.0	70.0
C(6'	"" ⁽)	18.5	18.5	18.6	18.5
	-				

the ¹H- and ¹³C-NMR spectra of **7** (*Tables 3* and 4) with those of **6**, **7** had one more 3HBO group than **6** at $\delta(H)$ (1.31 (d, J = 6.3 Hz), 1.34 (d, J = 6.3 Hz), 1.38 (d, J = 6.1 Hz), Me(4'), Me(4), and Me(4'')), 2.65–2.70 and 2.74–2.81 (2 m, 2 H each, CH₂(2) and CH₂(2')), 2.60 (dd, J = 5.2, 14.9 Hz, 1 H–C(2'')), 2.74–2.81 (m, 1 H–C(2'')), 4.52–4.54 (m, H–C(3'')), and 5.52–5.56 (m, H–C(3) and H–C(3')). In the HMBC experiment of **7**, the following ¹H \rightarrow ¹³C long-range correlations were observed: CH₂(2'') of 3HBO–C(3'), H–C(3'') of 3HBO–C(3'), and H–C(3') of 3HBO–C(3)/ $\delta(C)$ 171.4 (C=O of 3HBO–C(3')). Consequently, the structures of **6** and **7** were elucidated to be 3-*O*- α -L-rhamnopyranosylpolygalacic acid 28-{*O*- α -L-rhamnopyranosyl-(1 \rightarrow 2)-4-*O*-{(3S)-3-[(3S)-3-(hydroxybutanoyl)oxy]butanoyl]- β -D-fucopyranosyl (1 \rightarrow 3)-*O*- β -D-xylopyranosyl-(1 \rightarrow 4)-*O*-2-*O*-acetyl- α -L-rhamnopyranosyl-(1 \rightarrow 2)-4-*O*-{(3S)-3-[(3S)-3-(hydroxybutanoyl)oxy]butanoyl]- β -D-fucopyranosyl (1 \rightarrow 3)-*O*- β -D-xylopyranosyl-(1 \rightarrow 2)-4-*O*-{(3S)-3-[(3S)-3-(hydroxybutanoyl] α -L-rhamnopyranosyl-(1 \rightarrow 2)-4-*O*-{(3S)-3-{[(3S)-3-[(3S)-3-(hydroxybutanoyl] α -L-rhamnopyranosyl-(1 \rightarrow 2)-4-*O*-{(3S)-3-{[(3S)-3-([(3S)-3-(hydroxybutanoyl] α -L-rhamnopyranosyl-(1 \rightarrow 2)-4-*O*-{(3S)-3-{[(3S)-3-(hydroxybutanoyl] α -L-rhamnopyranosyl-(1 \rightarrow 2)-4-*O*-{(3S)-3-{[(3S)-3-(hydroxybutanoyl] α -L-rhamnopyranosyl-(1 \rightarrow 2)-4-*O*-{(3S)-3-{[(3S)-3-(hydroxybutanoyl] α -L-rhamnopyranosyl-

Pancreatic lipase is well known to play an important role in lipid digestion. Recently, inhibitory effects of saponins on pancreatic lipase were reported to be involved in anti-obese effects of saponins (*e.g.*, theasaponins, chikusetsusaponins) [28–31]. In the course of our characterization studies on anti-obese constituents from *B. perennis*, inhibitory effects of the constituents on pancreatic lipase activity were examined. Among the saponin constituents, perennisaponins G (1; *IC*₅₀ 163 μ M), H (2; 137 μ M), I (3;147 μ M), J (4; 148 μ M), K (5; 223 μ M), L (6; 81.4 μ M), and M (7; 195 μ M) were found to inhibit pancreatic lipase activity (*Table 5*). These saponins 1–7 are more

	Concentr	Concentration [µg/ml] ^a)				
	0	100	200	400	800	
MeOH Extract	0.0 ± 0.6	8.3 ± 1.8	$21.4 \pm 2.1^{\circ}$)	$43.8\pm1.9^{\circ})$	$71.6\pm4.5^{\circ})$	455
	Concentr	ration [µM] ^a)				<i>IC</i> ₅₀ [µм]
	0	50	100	200	400	
Perennisaponin G (1)	0.0 ± 2.8	-18.8 ± 10.4	21.3 ± 5.8	$58.9 \pm 3.7^{\circ}$)	85.5±1.7°)	163
Perennisaponin H (2)	0.0 ± 1.5	-33.5 ± 12.2	14.7 ± 9.3	$71.9 \pm 3.1^{\circ}$)	$87.4 \pm 1.3^{\circ}$)	137
Perennisaponin I (3)	0.0 ± 1.1	-17.0 ± 18.9	27.5 ± 8.9	$60.2 \pm 2.4^{\circ}$)	$85.2 \pm 4.1^{\circ}$)	147
Perennisaponin J (4)	0.0 ± 3.0	16.6 ± 13.6	$38.3 \pm 10.0^{\text{b}}$)	$55.9 \pm 5.1^{\circ}$)	$55.2 \pm 8.6^{\circ}$	148
Perennisaponin K (5)	0.0 ± 3.8	$35.0 \pm 5.0^{\circ}$)	$47.1 \pm 5.0^{\circ}$)	$43.1 \pm 10.1^{\circ}$)	$55.6 \pm 6.5^{\circ}$	223
Perennisaponin L (6)	0.0 ± 4.2	26.9 ± 7.2^{b})	$55.3 \pm 2.8^{\circ}$)	$52.7 \pm 5.1^{\circ}$)	$68.5 \pm 6.9^{\circ}$	81.4
Perennisaponin M (7)	0.0 ± 5.7	22.6 ± 12.0	28.5 ± 11.3	$53.9 \pm 3.8^{\circ}$)	$67.2 \pm 5.6^{\circ}$)	195
	Concentration [µM] ^a)					<i>IC</i> ₅₀ [µм]
	0	100	200	400	800	
Theasaponin E ₁	0.0 ± 2.2	24.4 ± 4.3^{b})	$39.2\pm7.9^{\circ})$	$57.4\pm9.1^{\mathrm{c}})$	$88.6\pm2.6^{\circ})$	270

Table 5. Inhibitory Effects of the MeOH Extract and of 1–7 from the Flowers of B. perennis against Pancreatic Lipase

^a) Values represent the means \pm s.e.m (N=4). Significantly different from the control group: ^b) p < 0.05. ^c) p < 0.01. efficient than theasaponin E_1 (IC_{50} 270 µM) [30], which was isolated from *Camellia* sinensis [32], although their inhibitory activities were considerably weaker than that of the lipase inhibitor orlistat (IC_{50} 56 nM). On the basis of above *in vitro* results and our previous *in vivo* evidence [2], the saponin constituents from the flowers of *B. perennis* may be useful for the prevention of obesity.

O. M., T. M., and K. N. were supported by 'High-tech Research Center' Project for Private Universities: matching fund subsidy from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, 2007–2011, and by a Grant-in Aid for Scientific Research from MEXT. M. Y., H. M., and S. N. were supported by the 21st COE Program, the Academic Frontier Project, and a Grant-in Aid for Scientific Research from MEXT. H. M. was also supported by the Hoh-ansha Foundation, Japan.

Experimental Part

General. Column chromatography (CC): normal-phase CC with silica gel BW-200 (SiO₂; 150–300 mesh; Fuji Silysia Chemical, Ltd., Japan), reversed-phase CC with Chromatorex ODS DM1020T (100–200 mesh; Fuji Silysia Chemical, Ltd., Japan). HPLC: Shimadzu-RID-6A refractive-index, SPD-10A UV/VIS, and Shodex-OR-2 optical-rotation detectors; Shimadzu-LC-6AD pump; Shimadzu-CTO-10A column oven; Shimadzu-C-R6A chromatopac; Cosmosil-5C₁₈-MS-II and -HILIC (Nacalai Tesque, Inc.), Wakopak-Navi-C-30-5 (Wako Pure Chemical Industries Ltd.), and YMC-Pack-ODS-A and YMC-Pack-ODS-AQ (YMC Co., Ltd.) columns; t_R in min. Optical rotations: Horiba-SEPA-300 digital polarimeter (l=5 cm). IR Spectra: Shimadzu-FTIR-8100 spectrometer; in cm⁻¹. ¹H- and ¹³C-NMR Spectra: Jeol-JNM-ECA600 spectrometer; at 600 and 150 MHz, resp.; δ in ppm rel. to Me₄Si, J in Hz. FAB- and HR-FAB-MS: Jeol-JMS-SX-102A mass spectrometer; in m/z.

Plant Material. The flowers of *B. perennis* cultivated in Albania were purchased from *Tochimoto Tenkaido Co., Ltd.*, in November 2006, as described previously [2][3].

Extraction and Isolation. Compounds 1-7 were isolated from previously reported fractions [2][3], Fr. 6.11 (4.850 g) and Fr. 6.12 (50.269 g), originally obtained from the MeOH-eluted fraction (6.4%, 140.0 g) of the MeOH extract from flowers of B. perennis. An aliquot of Fr. 6.11 (1820.0 mg) was purified by HPLC (Wakopak-Navi-C30-5, 250 × 20 mm i.d., MeCN/MeOH/1% aq. AcOH 32:16:52; 9.0 ml/min) to afford the following eight fractions: Fr. 6.11.1 (465.8 mg), Fr. 6.11.2 (272.1 mg), Fr. 6.11.3 (41.7 mg), Fr. 6.11.4 (44.5 mg), Fr. 6.11.5 (263.0 mg), Fr. 6.11.6 (210.0 mg), Fr. 6.11.7 (137.9 mg), and Fr. 6.11.8 (88.6 mg). Fr. 6.11.5 (263.0 mg) was purified by HPLC (Cosmosil 5C₁₈-MS-II, 250 × 20 mm i.d., MeCN/ MeOH/1% aq. AcOH 32:16:52; 9.0 ml/min): perennisaponin I (3; 33.1 mg, 0.0038%; t_{R} 48.9). Fr. 6.11.7 (137.9 mg) was purified by HPLC (Cosmosil 5C18-MS-II, 250 × 20 mm i.d., MeCN/MeOH/1% aq. AcOH 32:16:52; 9.0 ml/min): perennisaponin G (1, 42.0 mg, 0.0048%; t_R 64.1). Fr. 6.11.8 (88.6 mg) was purified by HPLC (Cosmosil 5C₁₈-MS-II, 250 × 20 mm i.d., MeCN/MeOH/1% aq. AcOH 32:16:52; 9.0 ml/min): perennisaponin L (6, 24.3 mg, 0.0028%; t_R 70.0). An aliquot of Fr. 6.12 (2015.0 mg) was further separated by HPLC (*Wakopak-Navi-C30-5*, 250 × 20 mm i.d., MeCN/1% aq. AcOH 40:60; 9.0 ml/min) to give the following six fractions: Fr. 6.12.1 (893.3 mg), Fr. 6.12.2 (324.4 mg), Fr. 6.12.3 (131.3 mg), Fr. 6.12.4 (350.4 mg), Fr. 6.12.5 (48.8 mg), and Fr. 6.12.6 (135.0 mg). Fr. 6.12.1 (893.3 mg) was separated by HPLC (Cosmosil 5C18-MS-II, 250 × 20 mm i.d., MeCN/MeOH/1% aq. AcOH 32:16:52; 9.0 ml/min) to furnish the following fourteen fractions: Fr. 6.12.1.1 (13.0 mg), Fr. 6.12.1.2 (9.4 mg), Fr. 6.12.1.3 (34.5 mg), Fr. 6.12.1.4 (10.5 mg), Fr. 6.12.1.5 (23.0 mg), Fr. 6.12.1.6 (80.8 mg), Fr. 6.12.1.7 (49.7 mg), Fr. 6.12.1.8 (86.8 mg), Fr. 6.12.10.9 (34.9 mg), Fr. 6.12.1.10 (125.8 mg, 0.139%; perennisaponin H (2); t_R 58.2), Fr. 6.12.1.11 (57.9 mg), Fr. 6.12.1.12 (109.2 mg, 0.119%; perennisaponin G (1); t_R 64.0), Fr. 6.12.1.13 (56.0 mg), and Fr. 6.12.1.14 (22.2 mg). An aliquot of Fr. 6.12.2 (180.0 mg) was purified by HPLC (Cosmosil HILIC, 250 × 20 mm i.d., MeCN/H₂O 90:10; 9.9 ml/min): perennisaponins J (4, 12.7 mg, 0.026%; $t_{\rm R}$ 49.9) and M (7, 31.7 mg, 0.065%; $t_{\rm R}$ 52.7) together with perennisaponins C (9.3 mg, 0.019%; $t_{\rm R}$ 65.2), D (8.1 mg, 0.017%; t_R 57.0), E (10.4 mg, 0.021%; t_R 59.2), and F (28.5 mg, 0.059%; t_R 55.7).

Fr. 6.12.3 (131.3 mg) was purified by HPLC (*Cosmosil HILIC*, 250×20 mm i.d., MeCN/H₂O 90:10; 9.9 ml/min): perennisaponins J (**4**, 32.6 mg, 0.034%; t_R 54.2) and K (**5**, 25.6 mg, 0.027%; t_R 57.1).

Perennisaponin G (=($2\beta_3\beta_4\alpha_16\alpha$)-3-[(6-Deoxy- α -L-mannopyranosyl)oxy]-2,16,23-trihydroxyolean-12-en-28-oic Acid O-6-Deoxy- α -L-mannopyranosyl-($1 \rightarrow 3$)-O- β -D-xylopyranosyl-($1 \rightarrow 4$)-O-2-Oacetyl-6-deoxy- α -L-mannopyranosyl-($1 \rightarrow 2$)-4-O-acetyl-6-deoxy- β -D-galactopyranosyl Ester; **1**): Amorphous powder. [α]₂₅²⁵ = -19.5 (c = 4.48, MeOH). IR (KBr): 3450, 1736, 1638, 1049. ¹H- and ¹³C-NMR: Tables 1 and 2. FAB-MS (pos.): 1327 ([M + Na]⁺). FAB-MS (neg.): 1303 ([M – H]⁻), 1157 ([M – C₆H₁₁O₄]⁻). HR-FAB-MS (pos.): 1327.6296 ([M + Na]⁺, C₆₃H₁₀₀NaO₂₈; calc. 1327.6299).

Perennisaponin H (=(2β,3β,4α,16α)-3-[(6-Deoxy-α-L-mannopyranosyl)oxy]-2,16,23-trihydroxyolean-12-en-28-oic Acid O-6-Deoxy-α-L-mannopyranosyl-(1 → 3)-O-β-D-xylopyranosyl-(1 → 4)-O-2-Oacetyl-6-deoxy-α-L-mannopyranosyl-(1 → 2)-4-O-acetyl-6-deoxy-β-D-galactopyranosyl Ester; **2**): Amorphous powder. [α]_D²⁵ = -30.9 (c = 4.43, MeOH). IR (KBr): 3450, 1734, 1638, 1049. ¹H- and ¹³C-NMR: Tables 1 and 2. FAB-MS (pos.): 1327 ([M + Na]⁺). FAB-MS (neg.): 1303 ([M - H]⁻), 1157 ([M - C₆H₁₁O₄]⁻), 649 ([M - C₂₇H₄₃O₁₈]⁻). HR-FAB-MS (pos.): 1327.6305 ([M + Na]⁺, C₆₃H₁₀₀NaO⁺₂₈; calc. 1327.6299).

Perennisaponin I (=(2β,3β,4α,16α)-3-[(6-Deoxy-α-L-mannopyranosyl)oxy]-2,16,23-trihydroxyolean-12-en-28-oic Acid O-6-Deoxy-α-L-mannopyranosyl-($1 \rightarrow 3$)-O-β-D-xylopyranosyl-($1 \rightarrow 4$)-O-2-Oacetyl-6-deoxy-α-L-mannopyranosyl-($1 \rightarrow 2$)-6-deoxy-4-O-[(3S)-3-hydroxy-1-oxobutyl]-β-D-galactopyranosyl Ester; **3**): Amorphous powder. [a]₂₅²⁵ = -22.0 (c = 2.28, MeOH). IR (KBr): 3450, 1738, 1638, 1049. ¹H- and ¹³C-NMR: Tables I and 2. FAB-MS (pos.): 1371 ([M + Na]⁺). FAB-MS (neg.): 1347 ([M – H]⁻), 1115 ([M – C₁₀H₁₇O₆]⁻), 649 ([M – C₂₉H₄₇O₁₉]⁻). HR-FAB-MS (pos.): 1371.6558 ([M + Na]⁺, C₆₅H₁₀₄NaO₂₅; calc. 1371.6561).

Perennisaponin J (=(2β,3β,4α,16α)-3-[(6-Deoxy-α-L-mannopyranosyl)oxy]-2,16,23-trihydroxyolean-12-en-28-oic Acid O-6-Deoxy-α-L-mannopyranosyl-(1 → 3)-O-β-D-xylopyranosyl-(1 → 4)-O-2-Oacetyl-6-deoxy-α-L-mannopyranosyl-(1 → 2)-4-O-[(3S)-3-(acetyloxy)-1-oxobutyl]-6-deoxy-β-D-galactopyranosyl Ester; **4**): Amorphous powder. [α]_D⁵ = -48.5 (c = 1.20, MeOH). IR (KBr): 3445, 1734, 1638, 1049. ¹H- and ¹³C-NMR: *Tables 3* and 4. FAB-MS (pos.): 1413 ([M + Na]⁺). FAB-MS (neg.): 1389 ([M - H]⁻), 649 ([M - C₃₁H₄₉O₂₀]⁻). HR-FAB-MS (pos.): 1413.6664 ([M + Na]⁺, C₆₇H₁₀₆NaO₃₀⁺; calc. 1413.6667).

Perennisaponin K (=($2\beta_3\beta_4\alpha_116\alpha$)-3-[(6-Deoxy- α -L-mannopyranosyl)oxy]-2,16,23-trihydroxyolean-12-en-28-oic Acid O-6-Deoxy- α -L-mannopyranosyl-($1 \rightarrow 3$)-O- β -D-xylopyranosyl-($1 \rightarrow 4$)-O-3-Oacetyl-6-deoxy- α -L-mannopyranosyl-($1 \rightarrow 2$)-4-O-[(3S)-3-(acetyloxy)-1-oxobutyl]-6-deoxy- β -D-galactopyranosyl Ester; **5**): Amorphous powder. [α]⁵⁵₂ = -47.1 (c = 1.00, MeOH). IR (KBr): 3445, 1734, 1638, 1049. ¹H- and ¹³C-NMR: *Tables 3* and 4. FAB-MS (pos.): 1413 ([M + Na]⁺). FAB-MS (neg.): 1389 ([M-H]⁻), 649 ([M-C₃₁H₄₉O₂₀]⁻). HR-FAB-MS (pos.): 1413.6674 ([M+Na]⁺, C₆₇H₁₀₆NaO⁺₃₀; calc. 1413.6667).

Perennisaponin L (=($2\beta_3\beta_4a_116a$)-3-[(6-Deoxy-a-L-mannopyranosyl)oxy]-2,16,23-trihydroxyolean-12-en-28-oic Acid O-6-Deoxy-a-L-mannopyranosyl-($1 \rightarrow 3$)-O- β -D-xylopyranosyl-($1 \rightarrow 4$)-O-2-Oacetyl-6-deoxy-a-L-mannopyranosyl-($1 \rightarrow 2$)-6-deoxy-4-O-{(3S)-3-{[(3S)-3-hydroxy-1-oxobuty]]oxy}-1oxobutyl]- β -D-galactopyranosyl Ester; **6**): Amorphous powder. [a] $_{26}^{26}$ = -22.4 (c = 1.64, MeOH). IR (KBr): 3450, 1736, 1655, 1049. ¹H- and ¹³C-NMR: Tables 3 and 4. FAB-MS (pos.): 1457 ([M + Na]⁺). FAB-MS (neg.): 1433 ([M - H]⁻), 1115 ([M - C₁₄H₂₃O₈]⁻), 649 ([M - C₃₃H₅₃O₂₁]⁻), 503 ([M -C₃₉H₆₂O₂₅]⁻). HR-FAB-MS (pos.): 1457.6937 ([M + Na]⁺, C₆₉H₁₁₀NaO₃₁; calc. 1457.6929).

Perennisaponin $M = (2\beta_3\beta_4\alpha_16\alpha)^{-3}-[(6-Deoxy-\alpha-L-mannopyranosyl)oxy]^{-2},16,23$ -trihydroxyolean-12-en-28-oic Acid O-6-Deoxy- α -L-mannopyranosyl- $(1 \rightarrow 3)$ -O- β -D-xylopyranosyl- $(1 \rightarrow 4)$ -O-2-Oacetyl-6-deoxy- α -L-mannopyranosyl- $(1 \rightarrow 2)$ -6-deoxy-4-O- $\{(3S)^{-3}-\{[(3S)^{-3}-hydroxy-1-oxybuty]\}$ oxy]-1-oxobutyl]oxy]-1-oxobutyl]- β -D-galactopyranosyl Ester; **7**): Amorphous powder. $[\alpha]_D^{26} = -24.2$ (c = 1.42, MeOH). IR (KBr): 3445, 1736, 1655, 1049. 'H- and ¹³C-NMR: Tables 3 and 4. FAB-MS (pos.): 1543 ($[M + Na]^+$). FAB-MS (neg.): 1519 ($[M - H]^-$), 649 ($[M - C_{37}H_{59}O_{23}]^-$). HR-FAB-MS (pos.): 1543.7290 ($[M + Na]^+$, $C_{73}H_{116}NaO_{33}^+$; calc. 1543.7297).

Alkaline Hydrolysis of 1–7. A soln. of each perennisaponins 1–7 (6 mg) in H₂O/1,4-dioxane 1:1 (1 ml) was treated with 10% aq. KOH soln. (1 ml), and the mixture was stirred at 40° for 12 h. The mixture was neutralized over *Dowex-HCR-W2* resin (H⁺ form), which was then removed by filtration.

The filtrate was concentrated, and the resulting product subjected to reversed-phase CC (2 g of *ODS*; $H_2O \rightarrow MeOH$) to afford H_2O - and MeOH-eluted fractions, resp. The H_2O -eluted fraction was dissolved in ClCH₂CH₂Cl (2 ml). This soln. was treated with *N*,*N*'-diisopropyl *O*-(4-nitrobenzyl)-isourea (=(4-nitrophenyl)methyl *N*,*N*'-bis(1-methylethyl)carbamimidate; 10 mg) and stirred at 80° for 1 h. The mixture was then subjected to HPLC (*YMC-Pack ODS-A*, 250 × 4.6 mm i.d., MeOH/H₂O 65:35; 0.8 ml/min, UV detection at 254 nm): 4-nitrobenzyl esters of 3-hydroxybutanoic acid (**a**; t_R 7.0) from **3**–**7** and of AcOH (**b**; t_R 8.3) from **1**–**7**. The MeOH-eluted fraction was subjected to normal-phase CC (2 g of SiO₂, CHCl₃/MeOH/H₂O 10:3:1, lower layer) to give (2 β ,3 β ,4 α ,16 α)-3-[(6-deoxy- α -L-mannopyranosyl)oxy]-2,16,23-trihydroxyolean-12-en-28-oic acid (**1a**; 2 mg each from **1**–**7**).

Deacylation of 1-7. A soln. of each perennisaponin 1-7 (2 mg) in 0.5% MeONa/MeOH (1 ml) was stirred at r.t. for 3 h. An aliquot of the mixture was subjected to HPLC (*YMC-Pack ODS-AQ*, 250 × 4.6 mm i.d.; MeOH/H₂O 20:80; 0.7 ml/min, optical-rotation detector): methyl (+)-(3S)-3-hydroxybutanoate (t_R 9.2, pos. optical rotation) from 3-7. The rest of each mixture was neutralized over *Dowex*-*HCR-W2* resin (H⁺ form), which was then removed by filtration. The filtrate was concentrated and the resulting product purified by HPLC (*Cosmosil 5C*₁₈-*MS-II*, 250 × 20 mm i.d., MeCN/MeOH/H₂O 32:16:52; 9.0 ml/min): bellissaponin BS1 (**1b**; 1.5 mg each from 1-7).

Effect on Pancreatic Lipase Activity. A suspension of triolein (80 mg), phosphatidylcholine (10 mg), and sodium taurocholate (5 mg) in 9 ml of 0.1m Tris · HCl buffer (pH 7.0) containing 0.1m NaCl was homogeneously emulsified with a homogenizer (strait Teflon pestle with strait glass tube, volume 20 ml). The substrate suspension (0.1 ml) in a test tube was preincubated with 5 μ l of test sample in DMSO and 95 μ l of Tris · HCl buffer for 3 min at 37°. An aliquot of porcine pancreatic lipase (250 μ g/ml, type II, Sigma-Aldrich, Inc.; 50 μ l) or Tris · HCl buffer (50 μ l) as a blank test was then added to start the reaction. After 30 min of incubation, the test tube was immediately immersed in boiling water for 2 min to stop the reaction and then cooled with water. Free fatty acid concentration was determined by a commercial kit (Wako NEFA C test, Wako Pure Chemical Industries, Ltd.). Theasaponin E₁ was isolated from Camellia sinensis [32] and used as a reference compound [28]. IC_{50} was determined graphically (N=4).

Statistics. Values were expressed as means \pm s.e.m. For statistical analysis, one-way analysis of variance followed by *Dunnett*'s test was used. Probability (*p*) values less than 0.05 were considered significant.

REFERENCES

- L.-B. Wang, T. Morikawa, S. Nakamura, K. Ninomiya, H. Matsuda, O. Muraoka, L.-J. Wu, M. Yoshikawa, *Heterocycles* 2009, 78, 1235.
- [2] T. Morikawa, X. Li, E. Nishida, Y. Ito, H. Matsuda, S. Nakamura, O. Muraoka, M. Yoshikawa, J. Nat. Prod. 2008, 71, 828.
- [3] M. Yoshikawa, X. Li, E. Nishida, S. Nakamura, H. Matsuda, O. Muraoka, T. Morikawa, Chem. Pharm. Bull. 2008, 56, 559.
- [4] H. Matsuda, T. Morikawa, T. Ohgushi, T. Ishiwada, N. Nishida, M. Yoshikawa, *Chem. Pharm. Bull.* 2005, 53, 387.
- [5] M. Yoshikawa, T. Morikawa, K. Yamamoto, Y. Kato, A. Nagatomo, H. Matsuda, J. Nat. Prod. 2005, 68, 1360.
- [6] M. Yoshikawa, S. Sugimoto, S. Nakamura, H. Matsuda, Chem. Pharm. Bull. 2007, 55, 571.
- [7] M. Yoshikawa, F. Xu, T. Morikawa, Y. Pongpiriyadacha, S. Nakamura, Y. Asao, H. Matsuda, *Chem. Pharm. Bull.* 2007, 55, 308.
- [8] S. Nakamura, S. Sugimoto, H. Matsuda, M. Yoshikawa, Heterocycles 2007, 71, 577.
- [9] M. Yoshikawa, S. Nakamura, Y. Kato, K. Matsuhira, H. Matsuda, Chem. Pharm. Bull. 2007, 55, 598.
- [10] M. Yoshikawa, T. Morikawa, Y. Asao, E. Fujiwara, S. Nakamura, H. Matsuda, *Chem. Pharm. Bull.* 2007, 55, 606.
- [11] M. Yoshikawa, S. Sugimoto, S. Nakamura, H. Sakumae, H. Matsuda, Chem. Pharm. Bull. 2007, 55, 1034.

- [12] S. Nakamura, S. Sugimoto, H. Matsuda, M. Yoshikawa, Chem. Pharm. Bull. 2007, 55, 1342.
- [13] M. Yoshikawa, T. Wang, S. Sugimoto, S. Nakamura, A. Nagatomo, H. Matsuda, S. Harima, Yakugaku Zasshi 2008, 128, 141.
- [14] M. Yoshikawa, S. Sugimoto, Y. Kato, S. Nakamura, T. Wang, C. Yamashita, H. Matsuda, *Chem. Biodiversity* 2009, 6, 903.
- [15] M. Yoshikawa, S. Sugimoto, S. Nakamura, H. Matsuda, Chem. Pharm. Bull. 2008, 56, 1297.
- [16] Y. Xie, T. Morikawa, K. Ninomiya, K. Imura, O. Muraoka, D. Yuan, M. Yoshikawa, *Chem. Pharm. Bull.* 2008, 56, 1628.
- [17] S. Nakamura, Y. Okazaki, K. Ninomiya, T. Morikawa, H. Matsuda, M. Yoshikawa, Chem. Pharm. Bull. 2008, 56, 1704.
- [18] S. Sugimoto, M. Yoshikawa, S. Nakamura, H. Matsuda, *Heterocycles* 2009, 78, 1023.
- [19] S. Sugimoto, G. Chi, Y. Kato, S. Nakamura, H. Matsuda, M. Yoshikawa, Chem. Pharm. Bull. 2009, 57, 269.
- [20] T. Morikawa, L.-B. Wang, S. Nakamura, K. Ninomiya, E. Yokoyama, H. Matsuda, O. Muraoka, L.-J. Wu, M. Yoshikawa, *Chem. Pharm. Bull.* 2009, 57, 361.
- [21] T. Schöpke, C. Al-Tawaha, V. Wray, M. Nimiz, K. Hiller, Phytochemistry 1997, 45, 125.
- [22] M. J. Burk, T. G. P. Harper, C. S. Kalberg, J. Am. Chem. Soc. 1995, 117, 4423.
- [23] T. Morikawa, H. Matsuda, T. Ohgushi, N. Nishida, T. Ishiwada, M. Yoshikawa, *Heterocycles* 2004, 63, 2211.
- [24] M. Yoshikawa, T. Wang, T. Morikawa, H. Xie, H. Matsuda, Chem. Pharm. Bull. 2007, 55, 1308.
- [25] K. Ninomiya, T. Morikawa, H. Xie, H. Matsuda, M. Yoshikawa, *Heterocycles* **2008**, *75*, 1983.
- [26] T. Morikawa, H. Xie, T. Wang, H. Matsuda, M. Yoshikawa, Chem. Pharm. Bull. 2008, 56, 1438.
- [27] T. Morikawa, H. Xie, T. Wang, H. Matsuda, M. Yoshikawa, *Chem. Biodiversity* 2009, 6, 411.
- [28] L.-K. Han, Y. Kimura, M. Kawashima, T. Takaku, T. Taniyama, T. Hayashi, Y.-N. Zheng, H. Okuda, *Int. J. Obes.* 2001, 25, 1459.
- [29] L.-K. Han, Y.-N. Zheng, M. Yoshikawa, H. Okuda, Y. Kimura, BMC Complem. Altern. Med. 2005, 5, 9.
- [30] T. Morikawa, Y. Xie, Y. Asao, M. Okamoto, C. Yamashita, O. Muraoka, H. Matsuda, Y. Pongpiriyadacha, D. Yuan, M. Yoshikawa, *Phytochemistry* 2009, 70, 1166.
- [31] Y. Asao, T. Morikawa, Y. Xie, M. Okamoto, M. Hamao, M. Matsuda, O. Muraoka, D. Yuan, M. Yoshikawa, *Chem. Pharm. Bull.* 2009, 57, 198.
- [32] I. Kitagawa, K. Hori, T. Motozawa, T. Murakami, M. Yoshikawa, Chem. Pharm. Bull. 1998, 46, 1901.

Received July 9, 2009